
An Efficient Tree Cache Coherence Protocol for
Distributed Shared Memory Multiprocessors

Yeimkuan Chang and Laxmi N. Bhuyan

AbstractÐDirectory schemes have long been used to solve the cache coherence

problem for large scale shared memory multiprocessors. In addition, tree-based

protocols have been employed to reduce the directory size and the invalidation

latency for a large degree of data sharing in the system. However, the existing

tree-based protocols involve a very high communication overhead for maintaining

a balanced tree, especially when the degree of data sharing is low. This paper

presents a new tree-based cache coherence protocol which is a hybrid of the

limited directory and the linked list schemes. By utilizing a limited number of

pointers in the directory, the proposed protocol connects the nodes caching a

shared block in a tree fashion without incurring any communication overhead. In

addition to the low communication overhead, the proposed scheme also

possesses the advantages of the existing bit-map and tree-based linked list

protocols, namely, scalable memory requirement and logarithmic invalidation

latency. We evaluate the performance of our protocol by running four applications

on the Proteus execution-driven simulator. Our simulation results show that the

performance of the proposed protocol is very close to that of the full-map protocol.

Index TermsÐCache coherence, tree-based directory protocols, shared memory,

large scale multiprocessors, execution-driven simulation.

æ

1 INTRODUCTION

SHARED memory multiprocessors have become very popular in the
area of parallel processing, mainly because they offer a simple
programming model with a single address space. The commu-
nication speed of the interconnection networks, however, cannot
match that of the processors, thus degrading system performance.
Introducing local caches greatly improves system performance but,
cache consistency must be maintained if many copies are allowed
to exist in different processors at the same time [1].

Several cache coherence schemes have been proposed in the
literature [2] to solve the cache consistency problem. Most of the
popular cache coherence protocols are based on snooping on the
bus that connects the processing elements to the memory modules.
But, the obvious limitation to such schemes is the limited number
of processors that can be supported by a single bus. The single bus
becomes the bottleneck in the system.

To make shared memory multiprocessors scalable with respect
to a large number of processors, non-bus-based networks, such as
point-to-point networks and multistage interconnection networks,
are normally employed. Since the broadcast procedure generates a
lot of traffic on networks, non-broadcast-based directory protocols
are used to implement cache coherence on shared memory
multiprocessors. Bit-map and linked list schemes are two
categories of directory protocols.

The full-map directory scheme maintains a bit map which
contains information about which node in the system has a shared
copy of an associated block. When a read or write miss occurs, a
request is sent to the home memory module as determined by the
address of the requested data. Upon receiving the request, the

home memory module sends a reply along with the data to the
requesting node. Thus, it takes two messages to serve a read miss
request. However, the storage overhead necessary to maintain the
directory is large and becomes prohibitive as the size of the system
grows. Also, the latency of cache transactions is usually larger
since these systems do not have a broadcasting medium like a
shared bus to send invalidation signals. One way to reduce the
storage overhead in the directory scheme is to use linked lists
instead of a sparsely used bit-map to keep track of multiple copies
of a block. In addition to the state information, some pointers
associated to each cache block are also needed to form a linked list
for tracking the processors caching the corresponding data. The
IEEE Scalable Coherent Interface (SCI) standard project [3] and the
Stanford's Distributed-Directory protocol [4], [5] apply this
approach to implement a scalable cache coherence protocol. In
this approach, the storage overhead is minimal, but maintaining
the linked list is complex and time consuming. The protocol is
oblivious of the underlying interconnection network. Therefore, a
request may be forwarded to a distant node although it could have
been satisfied by a neighboring node. The major disadvantage is
the sequential nature of the invalidation process for write misses.
The scalable tree protocol (STP) [6] and the SCI tree extensions [7],
[8] were proposed to reduce the latency of write misses. The low
latency of read misses is sacrificed in order to construct a balanced
tree connecting all the shared copies of a cache block. The large
number of messages generated for read misses, however, makes it
prohibitive for an application with a smaller degree of data
sharing.

Another approach being pursued by Agarwal et al. [9] limits
the number of pointers associated with each block in order to keep
the directory size manageable. However, this approach also limits
the number of processors that can share a block. This may lead to
serious degradation in performance for some applications which
require that data be read-shared by a large number of processors.
Such a high degree of sharing leads to thrashing in the limited
directory scheme. For example, Chaiken et al. [10], [11] proposed a
scheme, called the LimitLESS directory scheme, where the
directory size is limited by storing a limited number of pointers
in hardware, but the exceptional cases that lead to thrashing due to
limited directory space are handled by the software. The efficiency
of the LimitLESS protocol depends on the rapid trap handling and
context switching abilities of the processor. The existing schemes
are discussed in more detail in the next section.

In this paper, we propose a new tree-based cache coherence
scheme for shared memory multiprocessors. The proposed scheme
aims at reducing the latency of read and write misses. The main
idea is to utilize sharing information available from the limited
number of pointers in the directory and form an appropriate
number of trees. It is a hybrid of the limited directory and the
linked list protocols.

The rest of this paper is organized as follows: In Section 2,
existing schemes are discussed. The detailed design of our
proposed tree-based directory protocol is provided in Section 3.
Performance comparison between different protocols is given in
Section 4 by using execution-driven simulation. Finally, conclud-
ing remarks are presented.

2 DISCUSSION ON EXISTING SCHEMES

Existing directory schemes fall into two categories, namely bit-map
and linked list protocols. A nomenclature, DiriX, was introduced
in [9] for bit-map coherence protocols. The index i in DiriX
represents the number of pointers for recording the owners of
shared copies, and X is either B or NB, depending on whether a
broadcast is issued when the pointers overflow. In [11], a
generalized notation DiriHXSY ;A was introduced for clearly

352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

. Y. Chang is with the Department of Information Management, Chung-Hua
University, Taiwan 30067, Republic of China.
E-mail: ykchang@mi.chu.edu.tw.

. L.N. Bhuyan is with the Department of Computer Science, Texas A&M
University, College Station, TX 77843-3112.
E-mail: bhuyan@cs.tamu.edu.

Manuscript received 12 Oct. 1996; revised 25 Oct. 1998.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 102157.
.

0018-9340/99/$10.00 ß 1999 IEEE

articulating the differences between various implementations
using hardware and software extension. The subscript X of
DiriHXSY ;A denotes the number of pointers recorded in hardware
when software extension exists; otherwise, it is B or NB, like the X
in notation DiriX. If software-extension exists, Y represents B or
NB and A represents how software handles the acknowledgments.

Both the notations given above are only suitable for bit-map
protocols. We introduce a new notation DiriTreek for the linked
list protocols that will cover all the existing linked list protocols.
The subscripts i and k in DiriTreek represent the number of
pointers in the directory and the number of pointers in the tree
structure, respectively. For example, the Stanford's singly linked
list protocol [4] and SCI [12], [3] belong to Dir1Tree1 because they
have only one pointer in the directory pointing to the head of the
list. Note that DiriTreek does not distinguish the difference
between singly linked list protocols (i.e., with only forward
pointers) and double linked list protocols (i.e., with both forward
and backward pointers). STP [6] belongs to Dir2Treek because it
maintains a k-ary tree and keeps pointers to the root of the tree and
the latest node joining the tree. Similarly, the STEM tree extension
to SCI [7] belongs to Dir2Tree2 because it maintains a balanced
binary tree and keeps two pointers, one to the root of the tree and
the other to the latest node joining the tree. Our tree-based protocol
is a DiriTreek scheme with only forward pointers.

2.1 Bit-Map Schemes

The full-map (DirnNB) [13] associates n bits with each memory
block, one bit per node. If a copy of the shared block is contained in
the local cache of a node, the corresponding presence bit is set. The
directory also has a dirty bit. If the dirty bit is set, only one node in
the system has a copy of the corresponding shared block. Read
misses require two messages if the data is valid in the memory
block and four messages if the data is dirty. The time taken for
invalidation is proportional to the number of valid copies which
can be large for applications with large degrees of sharing. The
advantage of this scheme lies in that only the nodes caching the
block receive the invalidation messages. The disadvantage is the
unscalable directory memory requirement. The amount of direc-
tory memory in the n-node system is of B � n2 bits, where B is the
number of shared blocks in each node.

Limited directory schemes [9] employ a limited number of
pointers to record which processors have a copy of the data. The
main idea behind these schemes is based on the empirical results
that, in most of the applications, only a small number of processors
(less than four) share a memory block most of the time. Thus, the
limited schemes perform as well as the full-map scheme for most
applications. The advantages of having a limited number of
pointers are the scalable memory requirement and faster hardware
support. If the pointers are not sufficient to record all nodes having
the shared copies (i.e., pointer overflow), various mechanisms

[10], [11], [14], [15], [9], [16], [17] were proposed to deal with the

pointer overflow situation.

2.2 Linked List Schemes

The schemes based on linked lists employ a distributed directory

among the main memory and the caches. It is different from bit-

map schemes in that there are pointer fields both in the memory

blocks and cache blocks. The use of these pointers is to organize

the set of caches holding a copy of the shared data in a linked list or

tree structure. These schemes reduce the size of the directory and

do not require invalidation messages to be sent to all processors.
The singly linked list protocol proposed in [4] forms the

directory by chaining the memory block and the cache blocks

having the shared data as a singly linked list. Each cache block

only keeps a pointer to a node that also caches a copy of the same

data. The home memory block points to a node called head that is

the last one joining the linked list. The head in turn uses its pointer

to point to another node that also has a valid copy. Continuing the

above pointing process, a singly linked list is formed. The last node

in the list, called tail, points back to the home memory module.
The Scalable Coherent Interface (SCI) is an IEEE standard

(P1596) [12], [3]. The motivation behind SCI is to allow multiple

vendors to develop components of a computer system that follow

the SCI specifications. A parallel computer can be built by

integrating these components. SCI specifies a topology-indepen-

dent network and a cache coherence protocol. The SCI cache

coherence protocol is based on a noncircular, doubly linked list of
cache blocks to keep track of cached copies.

The Scalable Tree Protocol (STP) [6] uses a top-down approach

to construct a single balanced tree from the caches having a copy of

data. Take a binary tree as an example. Each memory block

contains three pointers, root, last, and writepending. Pointer root

points to the root of the tree. Pointer last points to the cache that

caches the shared data most recently. Pointer writepending points
to the cache with a pending write request. Each cache block

contains five pointers, called father, son�0�, son�1�, backward, and

forward. The father pointer of a cache block is used to point to its

father node in the tree. The two pointers of a cache block, son[0]

and son[1], point to its two children. Pointers backward and

forward are used in the same manner as in SCI protocol.
To improve the performance for widely shared data, the STEM

tree extension to SCI has the consensus of the SCI working group
for use as an extension to SCI, officially IEEE P1596.2 [7]. This

scheme is a binary tree protocol that allows parallel tree insertion

and deletion, while maintaining a reasonably balanced tree for

write operations. The height of the tree is balanced during

insertions by the AVL tree rotation algorithm. The AVL tree

balancing property is that the heights of two subtrees of a node

differ by at most one. This scheme has a read miss overhead

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999 353

TABLE 1
Number of Messages Generated by a Read or Write Miss for Various Schemes, Where P Is the Number of Nodes in the Sharing List

similar to STP. Thus, it does not perform well for the applications
with a low degree of data sharing and less frequent write misses.

In addition to STEM, GLOW is another kiloprocessor extension
to SCI [8]. The GLOW extension is intended to be used in SCI
multiprocessor systems that are comprised of multiple SCI rings
connected through SCI bridges. Only accesses to widely shared
data use the GLOW extension protocol by special request
commands, while other accesses to data with low degree of
sharing are left to standard SCI cache coherence protocol. The
extensions are implemented in the bridges that connect the SCI
rings. GLOW is a k-ary tree protocol. The GLOW extension
constructs trees in a predetermined way. GLOW maps the
underlying topology onto a k-ary tree such that the nodes in
physical proximity become neighbors in the sharing list.

We summarize the number of messages generated by a read or
write miss for the various protocols in Table 1. The pros and cons
of each protocol are also given in Table 2. The Dir4Tree2 is an
example of the new protocol, proposed in the next section.

3 THE NEW CACHE COHERENCE PROTOCOL

We propose a cache coherence protocol that combines a limited
directory scheme with a tree-based scheme. The design of the
protocol aims at minimizing communication overhead for con-

structing the tree structure when a read miss occurs and for
invalidating the copies of the shared memory block when a write
miss occurs. As in the limited directory scheme, each shared
memory block contains a limited number of pointers. However,
each pointer in the directory points to a tree instead of a single
node. When a read miss occurs, the requesting processor sends a
read miss request to the home node. The home node returns the
requested data block as in the bit-mapped scheme plus two
pointers of the corresponding directory and, then, sets one of its
pointers in the directory to the requesting processor. The two
pointers returned from the home node now become the two child
nodes of the requesting processor. Thus, a tree with one more level
is formed. The proposed protocol has the advantages of the bit-
map protocol and the tree-based linked list protocol, namely, a
small read miss latency (two messages), a logarithmic write
latency, and a scalable directory memory requirement. We begin
by discussing the directory structures for cache and memory
blocks. Then, coherence actions are described for read misses,
write misses, and block replacements.

3.1 Directory Structure

The proposed scheme maintains many optimal or near-optimal
trees for all shared cache blocks. We call it a DiriTreek scheme
because i k-ary trees are maintained. The indices i and k of

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

TABLE 2
Pros and Cons for Various Protocols

Fig. 1. The structures of cache and memory blocks.

DiriTreek indicate the number of pointers in each memory block

and cache block, respectively. Thus, DiriTreek employs i pointers

in a memory block and constructs k-ary trees pointed to by these i

pointers. The subscript k must be less than or equal to i. The

m e m o r y r e q u i r e m e n t f o r a n n- n o d e s y s t e m i s

B � n � 2i logn� C � k logn, where B and C are the numbers of

memory and cache blocks per node, respectively.
The empirical results in [18] suggest that, in many applications,

the number of shared copies of a cache block is lower than four,

regardless of the system size. Thus, we feel justified in using i � 4

and k � 2 to construct binary trees in this study. The write

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999 355

Fig. 2. State transition diagram of the cache blocks.

Fig. 3. State transition diagram of the memory blocks.

operation can be implemented by employing either an invalidation

or an update protocol. We use an invalidation protocol with a

strong consistency model in this paper. Fig. 1 shows the structures

of cache and memory blocks. The variable level in the memory

block is used to record the height of the trees, facilitating the

construction of near-optimal trees.

3.2 The Protocol and its Coherence Operations

The states of cache blocks include E (exclusive), V (valid), and IV

(invalid), RM_IP (Read Miss In Process), WM_IP (Write Miss In

Process), and INV_IP (Invalidation In Process). The state transition

diagram of cache blocks is shown in Fig. 2. RM_IP, WM_IP, and

INV_IP are transient states. In general, the coherence operations

are similar to those in the full-map protocol.

Since we use a strong consistency model, the state of a cache

block which sends invalidation messages to its children is changed

to WM_I_IP and waits for the acknowledgments. The transient

state WM_I_IP for cache blocks does not exist in the full-map

protocol. Two kinds of invalidation messages are shown in Fig. 2.

INV is used for the regular invalidation messages, as in the full-

map protocol. ReplaceINV is used for the coherence operations for

cache replacements and will be explained in detail later.
The states of the memory blocks are the same as those in the

full-map directory protocol. Fig. 3 shows the state transition

diagram of the memory blocks. The memory transient states are

RM_WW (Read Miss Waiting for Writeback), WM_WW (Write

Miss Waiting for Writeback), and WM_I_IP (Write Miss's

Invalidation In Process).

356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

Fig. 4. Dir4Tree2 message movements for the read misses generated by the fifth to the 15th nodes joining the sharing tree.

The major differences between DiriTreek and the full-map
protocol lie in how the tree is constructed by using the limited
number of pointers and in the actions taken for block replace-
ments. As in the full-map directory protocol, the requested block is
always provided by the home node. We discuss the read miss,
write miss, and the coherence operations for cache replacements in
detail below.

3.2.1 Read Miss

A read request is said to be a miss if the cache controller finds that
the requested data is not in any cache block or the cache block
containing the requested data is in the invalid state. When a read
miss occurs, a local cache is first selected for replacement. The
request is then passed over the network to the home memory
module. The operations to serve a read miss are the same as in the
limited directory scheme if a null pointer in the directory is
available for the request. Otherwise, two pointers are selected and
sent to the requesting node along with the requested data. The
processors which were pointed to by the selected pointers become
the children of the requesting processor. One of these two pointers
is set to point to the requesting processor and the other is set to
null. Fig. 4 shows the tree construction process of the proposed
Dir4Tree2 scheme, while the fifth to the 15th nodes join the sharing
tree. As shown in Fig. 4a, the directory structure is the same as the
full-map scheme with four sharing caches. After the node 5
generates a read miss to the home memory module and receives
the RM_reply(data, 1, 2), the directory structure becomes the one
shown in Fig. 4b. As we can see, nodes 1 and 2 now become the
two children of node 5, and pointers p[0] and p[1] point to node 5
and null, respectively.

Fig. 5 lists in detail the coherence operations for serving a read
miss at memory directory. Pointer p�i� and level�i� fields for i = 0..3
are initialized to null and 0, respectively. The operation �data; x; y�
ÿ! p means that the data along with two pointers x and y is sent to
node p. Four different situations are considered in Fig. 5. First, it
checks whether or not the requesting node has already been
pointed to by one of the i pointers in the memory directory. This
dangling pointer problem might occur when a cached block was
replaced and, later on, it is requested by the same node again.
Other situations regarding to dangling pointers are addressed
when we discuss the replacement policy. The second situation
considers the case when a node has a read miss the first time and
there is a null pointer available in the memory directory. As in the
bit-map scheme, the available pointer is set to pointing to the

requester before sending out the data. The third and fourth
situations consider the cases when there is no null pointer available
in the directory for the next incoming read request. If there are two
pointers pointing to two trees with the same height, these two
pointers will be sent to the requesting node and the nodes pointed
to by these two pointers become the children of the requesting
node. Then, one of these two pointers is set to pointing to the
requesting node and the corresponding level field is incremented
by one. The other pointer is reset to null and the level is reset to 0.
The last situation considers the case when there are no two
pointers which point to the trees with the same height. The pointer
with the smallest level will be selected and sent to the requesting
node. The node pointed to by the selected pointer becomes the
only child of the requesting node. Then, the selected pointer is set
to point to requesting processor and the level of the pointer is
incremented by one.

Note that Fig. 5 shows only the high level algorithm for dealing
with a read miss. It is possible to implement an efficient hardware
design for this operation. Unlike the limited directory, DiriTreek
does not rely on broadcast, or generate any unnecessary invalida-
tion messages. DiriTreek does not have high overhead caused by a
software trap used by the LimitLESS scheme.

Since there are only a limited number of pointers in the
directory, trees generated by DiriTreek are not balanced. Table 3
lists the maximum number of processors caching a memory block
versus the level of the trees for the proposed schemes, Dir2Tree2,
Dir4Tree2, and SCI or STP with binary trees. We can easily check
from the first row of the table that, when there are 16 processors
caching a memory block using the Dir4Tree2 scheme, pointers 0
and 1 point to a tree with seven nodes and pointers 2 and 3 point to
a singly node. If a 1,024-node system is built, the biggest tree
maintained by the Dir4Tree2 scheme is of 12 levels, just one level
more than the balanced binary tree.

3.2.2 Write Miss

When a write miss occurs, the write request is first sent to the
home memory module. Invalidation messages are then sent out to
the root nodes of the trees by following the pointers in the
directory. The other nodes caching the data are invalidated by the
messages originating from their corresponding roots. In order to
speed up the invalidation process further, the nodes pointed to by
odd numbered pointers receive invalidation messages from the
nodes pointed to by even numbered pointers. The home memory
module receives at most only half the number of acknowledgments
and, thus, the possibility of the home node becoming a bottleneck

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999 357

Fig. 5. Cache coherence operations for a read miss.

TABLE 3
Maximum Number of Nodes Constructed in Dir2Tree2 and Dir4Tree2

as a Function of Level

reduces. An example of a write miss operation is shown in Fig. 4h,
where 15 shared copies are in the system before a write miss on
cache 16 occurs. Cache 16 first sends a write miss request (WM) to
the home memory module. The home memory module then sends
invalidation messages (INV) shown in dashed lines in the figure to
caches 9 and 14. The invalidation messages to node 15 originate
from node 9. The acknowledgments omitted from the figure to
preserve clarity follow the reverse direction of the invalidation
paths. After the invalidation process completes, a write miss reply
(WM_Reply) is sent back to the requesting cache. One pointer in
the directory is set to point to the requesting cache and the other
pointers are set to null. The final state of the memory block
becomes exclusive.

3.2.3 Replacement Operation

When a miss occurs, a cache block must be selected for storing the
requested data before a request is sent to the home memory
module for service. If the selected cache block currently holds a
valid or exclusive copy of data with a different address, a
replacement operation needs to be performed. We propose that,
when a valid or exclusive cached block is being replaced, the
subtree rooted at the replaced cache block be invalidated without
informing the home directory. The message type Replace_INV is
used for the replacement operation to distinguish INV generated
by write misses because no acknowledgment is needed for
replacement. The rationale of doing this is as follows: First, as
noted in [18], most of the time, the number of shared copies of a
memory block is less than four. Thus, our replacement operations
perform as well as the bit-map scheme because the replaced cache
block does not have any child most of the time. Second, even when
the trees grow bigger, most of the replaced cache blocks are
positioned as the leaf nodes of the trees. Third, the replacements
are not frequent if the set size of an associative cache memory
increases. It is possible that one of the roots may be replaced and
causes some communication traffic if one of its children issues a
request later. However, the proposed replacement action is simple
and easy to implement. It is worthwhile to note that the only
possible communication overhead of the proposed scheme comes
from the replacements.

Based on the proposed replacement policy, if a cache that has
already been recorded in the directory completes a read request
again, it is possible that one of its child nodes was its previous
parent or ancestor in the corresponding tree. When this cache
performs a replacement or write miss operation, its state is
changed to INV_IP. An invalidation message may be forwarded
back to itself through its child. This cache in the INV_IP state
simply replies to an acknowledgment. No further action is needed.
Thus, a read miss does not require a search of all the trees pointed
to in the corresponding directory to check if the cache has already
been recorded.

4 PERFORMANCE EVALUATION

In this section, we first utilize the coherence overhead caused by
read and write misses to compare the proposed scheme to the
existing schemes. The pros and cons of each protocol are also
given. We then use the execution-driven simulation coupled with
four real applications to compare the performance of our proposed
DiriTreek coherence scheme with that of the full-map and the
limited directory schemes. The number of network messages
generated for servicing a read or write miss is used as the metric
for the cache coherence overhead. The applications comprise
MP3D, LU decomposition, the Floyd Washall algorithm, and a Fast
Fourier Transformation program (FFT).

4.1 Coherence Overhead

In Table 2, we can see that the full-map, DiriNB, LimitLESS, and
hybrid protocols generate the smallest number of network
messages for a read miss. A smaller number of network messages
reflects a smaller amount of time taken to complete a read miss.
From the table, we also can see that the singly linked list protocol
generates fewer number of messages than the other protocols for a
write miss. However, it is not necessary to mean that the singly
linked list protocol must take less amount of time to complete a
write miss than the other protocols. The reason is that the
invalidation process for the singly linked list protocol is sequential.
In other words, the caches in the shared list of the singly linked list
protocol must be invalidated one after another. The amount of time
taken to invalidate a cache in the shared list is the sum of the time
for creating a message, transferring the message across the
network, receiving the message, and processing the message.
Thus, the sequential invalidation process is slow. Note that the
invalidation process for SCI protocol is also sequential. The
invalidation processes for the full-map, DiriNB, and LimitLESS
may be sequential or parallel. If the memory module requires that
the next invalidation message cannot be sent out until the
acknowledgment of the previous invalidation message is received,
the process is sequential. Otherwise, the invalidation process is
parallel. Note that the memory module in the full-map, DiriNB,
and LimitLESS is responsible for sending and receiving all the
invalidation and acknowledgment messages; it may become the
bottleneck of the invalidation process if the size of the shared list is
large. On the other end, the tree-based protocols, such as the SCI
extension, STP, and the proposed protocols, distribute the load of

358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

TABLE 4
Simulation Model

Fig. 6. Normalized execution time for MP3D.

the memory module over other nodes. In addition to the parallel
message transfers over the network, the tree-based invalidation
process is faster than the other protocols.

4.2 Simulation Methodology

We ported the proposed coherence scheme to PROTEUS [19],
which is an execution driven simulator for shared memory
multiprocessors. The simulator can be configured to either bus-
based or k-ary n-cube networks. The networks use a wormhole
routing technique. The specification of the simulated network and
the cache memory is given in Table 4. We compare the normalized
execution time for each application running with the various
schemes as mentioned above, where the normalized execution
time is defined as the relative execution time to that of the full-map
scheme. The examined schemes are DirnNB, DiriNB and DiriTree2

for i � 1; 2; 4; 8.

4.2.1 MP3D

The MP3D application is taken from the SPLASH parallel bench-
mark suite [20]. MP3D solves problems in rarefied fluid flow
simulation that are useful for aerospace researchers who study the
forces exerted on space vehicles as they pass through the upper
atmosphere at hypersonic speeds. MP3D employs a five-degree-of-
freedom simulation of idealized diatomic molecules in a three-
dimensional space. Two large arrays of structures are used to store
the state information for each molecule and the properties of each
cell in the 3D space. The work is partitioned by molecules, which
are statically scheduled on processors. MP3D is notorious for its
low speedups [21]. For our simulation, we used 3,000 particles and
ran the application in 10 steps. The results are given in Fig. 6 for 8,
16, and 32 processors. As expected, the performance of limited
protocols (Dir8NB and Dir4NB) is the worst due to the delay
caused by unnecessary invalidations. The protocol Dir1Tree2

creates a linear sharing list instead of a tree-like list. The
invalidation process for the linear sharing list becomes sequential,
and thus results in worse performance. For 8-processor and 16-
processor systems, the full-map scheme is the best because the
degree of sharing for most shared blocks in MP3D is low [18]. It is
shown that Dir4Tree2 is only less than 5 percent slower than the
full-map scheme and much faster than the limited directory
schemes Dir4NB and Dir8NB.

However, as the size of the system increases from 16 to 32
processors, Dir2Tree2 and Dir4Tree2 perform even better than the

full-map scheme. The reason is as follows: As the size of the system

increases, it is quite possible for different processors to access a

given space cell during the same time-step. Thus, the number of

shared blocks with larger degree of sharing also increases. It takes

less time for Dir2Tree2 and Dir4Tree2 to invalidate the shared

blocks with larger degree of sharing than the full-map scheme.

4.2.2 LU Decomposition

The LU application is also taken from the SPLASH parallel

benchmark suite [20]. It is a parallel version of dense blocked LU

factorization, which factors a dense matrix into the product of a

lower triangular and an upper triangular matrix. The dense n� n
matrix A is divided into an N �N array of B�B blocks (n � NB)

to exploit temporal locality on submatrix elements. We use a 128�
128 matrix in our simulation study. Fig. 7 shows the performance

results for LU. As expected, the Dir1NB and Dir2NB protocols give

the worst performance for all cases. The difference between other

protocols is within 1 percent. The reason is that the time spent on

waiting synchronization points exceeds 35 percent of overall

execution time for LU. Thus, all the protocols excluding Dir1NB

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999 359

Fig. 7. Normalized execution time for LU.
Fig. 8. Normalized execution time for Floyd Washall.

Fig. 9. Normalized execution time for FFT.

and Dir2NB do not show much difference on the normalized
overall execution time.

4.2.3 Floyd Washall

Floyd Washall is a program that computes the shortest distance
between every pair of nodes in a network. The network employed
is a random graph of 32 nodes. The basic data structures in the
Floyd Washall algorithm are two-dimensional arrays for repre-
senting the predecessor matrix and the distance matrix. An
additional two-dimensional array is also used for recording the
computed path. Each processor is responsible for updating a few
rows of the distance matrix. The entire matrix is declared as a
shared array. Updating the distance matrix requires reading the
entire shared array, which incurs a large degree of data sharing.
Fig. 8 shows the performance plot for the Floyd Washall program.
Dir8Tree2 and Dir4Tree2 perform very closely to the full-map
scheme. The performance difference between Dir4Tree2 and the
full-map scheme is less than 2 percent.

4.2.4 FFT

Fig. 9 gives the results for the FFT application. Except for
Dir1Tree1, all the other schemes perform very well. However, the
hybrid schemes Dir4Tree2 and Dir8Tree2 perform better than the
full-map and the limited directory schemes. The improvement in
case of the hybrid schemes increases when the system becomes
bigger. The improvement stems from the fact that not much
communication overhead is caused by replacements.

5 CONCLUSION

In this paper, we proposed a new tree-based directory cache
coherence protocol for shared memory multiprocessors. The
proposed protocol combines the features of the limited directory
schemes with tree protocols. It utilizes a limited number of
pointers to construct trees reducing the directory size and the
invalidation latency. Compared to the STP and the SCI tree
extension scheme, the proposed scheme has lower read miss
overhead, which is just two messages. At the same time, it retains
the low invalidation properties of a tree protocol for a large degree
of sharing. The trees constructed by the proposed scheme are
nearly balanced. Extensive execution driven simulation on Proteus
has shown that the proposed scheme is very close in performance
to the full-map scheme. When the number of processors is large,
the new scheme even outperforms the full-map scheme in some
cases, despite requiring less directory space than the full-map
scheme.

REFERENCES

[1] M. Dubois, C. Scheurich, and F.A. Briggs, ªSynchronization, Coherence,
and Event Ordering in Multiprocessors,º Computer, pp. 9-21, Feb. 1988.

[2] D.J. Lilja, ªCache Coherence in Large-Scale Shared-Memory Multiproces-
sors: Issues and Comparisons,º ACM Computing Surveys, pp. 303-338, Sept.
1993.

[3] IEEE Std 1596-1992: IEEE Standard for Scalable Coherent Interface. New York:
IEEE, Aug. 1993.

[4] M. Thapar, B. Delagi, and M.J. Flynn, ªLinked List Cache Coherence for
Scalable Shared Memory Multiprocessors,º Proc. Int'l Parallel Processing
Symp., pp. 34-43, Apr. 1993.

[5] M. Thapar and B. Delagi, ªStanford Distributed Directory Protocol,º
Computer, vol. 23, no. 6, pp. 78-80, June 1990.

[6] H. Nilsson and P. Stenstrom, ªThe Scalable Tree ProtocolÐA Cache
Coherence Approach for Large-Scale Multiprocessors,º Proc. Int'l Symp.
Parallel and Distributed Processing, pp. 498-506, Dec. 1992.

[7] R.E. Johnson, ªExtending the Scalable Coherent Interface for Large-Scale
Shared-Memory Multiprocessors,º PhD thesis, Univ. of Wisconsin-Madi-
son, 1993.

[8] S. Kaxiras, ªKiloprocessor Extensions to SCI,º Proc. Int'l Parallel Processing
Symp., Apr. 1996.

[9] A. Agarwal, R. Simoni, J. Hennessy,, and M. Horowitz, ªAn Evaluation of
Directory Schemes for Cache Coherence,º Proc. Int'l Symp. Computer
Architecture, pp. 280-289, 1988.

[10] D. Chaiken, J. Kubiatowicz,, and A. Agarwal, ªLimitLESS Directories: A
Scalable Cache Coherence Scheme,º ASPLOS-IV Proc., pp. 224-234, Apr.
1991.

[11] D. Chaiken and A. Agarwal, ªSoftware-Extended Coherent Shared
Memory: Performance and Cost,º Proc. Int'l Symp. Computer Architecture,
pp. 314-324, Apr. 1994.

[12] D.V. James, A.T. Laundrie, S. Gjessing,, and G.S. Sohi, ªDistributed
Directory Scheme: Scalable Coherent Interface,º Computer, vol. 23, no. 6,
pp. 74-77, June 1990.

[13] L.M. Censier and P. Feautrier, ªA New Solution to Coherence Problems in
Multicache Systems,º IEEE Trans. Computers, pp. 1,112-1,118 Dec. 1978.

[14] M. Hill et al., ªCooperative Shared Memory: Software and Hardware for
Scalable Multiprocessors,º ASPLOS-V Proc., pp. 262-273, Oct. 1992.

[15] D. Wood et al., ªMechanisms for Cooperative Shared Memory,º Proc. Int'l
Symp. Computer Architecture, pp. 156-167, May 1993.

[16] A. Gupta et al., ªReducing Memory and Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes,º Proc. Int'l Conf. Parallel
Processing, 1990.

[17] W. Michael, ªA Scalable Coherence System with a Dynamic Pointing
Scheme,º Proc. Supercomputing, pp. 358-367, 1992.

[18] W.-D. Weber and A. Gupta, ªAnalysis of Cache Invalidation patterns in
Multiprocesors,º ASPLOS-III Proc., pp. 243-256, 1989.

[19] E.A. Brewer, C.N. Dellarocas, A. Colbrook,, and W.E. Weihl, ªPROTEUS: A
High-Performance Parallel Architecture Simulator,º Technical Report
MIT/ICS/TR516, MIT, 1991.

[20] J.P. Singh, W.D. Weber,, and A. Gupta, ªSPLASH: Stanford Parallel
Applications for Shared Memory,º Technical Report CSL-TR-92-526,
Stanford Univ., 1992.

[21] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta,, and J.
Hennesy, ªThe DASH Prototype: Logic Overhead and Performance,º IEEE
Trans. Parallel and Distributed Systems, vol. 4, no. 1, pp. 41-60, Jan. 1993.

360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 3, MARCH 1999

